Choosing Variables with a Genetic Algorithm for Econometric models based on Neural Networks learning and adaptation
نویسندگان
چکیده
The mixture of two already known soft computing techniques, like Genetic Algorithms and Neural Networks (NN) in Financial modeling, takes a new approach in the search for the best variables involving an Econometric model using a Neural Network. This new approach helps to recognize the importance of an economic variable among different variables regarding econometric modeling. A Genetic algorithm constructs a set of working neural networks, evolving the inputs given to each NN as well as its internal architecture. An input subset is chosen by the genetic algorithm from a multiple variable set, due to the NN training results from this given input. At the end of the evolutionary process, the best given inputs for a specific neural network architecture are obtained. The experimental results revealed an improvement of 80% in the NN learning performance of the Econometric model. At the same time it reduces the model complexity by 46%, without large computer resources being used during the evolutionary process.
منابع مشابه
Forecasting GDP Growth Using ANN Model with Genetic Algorithm
Applying nonlinear models to estimation and forecasting economic models are now becoming more common, thanks to advances in computing technology. Artificial Neural Networks (ANN) models, which are nonlinear local optimizer models, have proven successful in forecasting economic variables. Most ANN models applied in Economics use the gradient descent method as their learning algorithm. However, t...
متن کاملConstruction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms
One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven metho...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کامل